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Abstract

Inferring the demonstrator’s intent from a set of demonstrations is the central prob-
lem in inverse reinforcement learning. The fundamental challenge stems from the
existence of multiple reward functions that explain the same set of demonstrations.
We make an observation to address this problem: structure in reward functions for
many real-world tasks is well captured by formal language. We use this observation
to construct an efficient reward-learning algorithm based on regular expressions
called Regular Expression Reward Learning (RERL). We demonstrate that RERL
can learn intent with very few demonstrations, and outperforms existing methods
for reward inference on a suite of long-horizon tasks.

1 Introduction

Demonstrations are a natural and powerful way to communicate tasks to an agent. However, directly
mimicking demonstrations often results in poor performance due to factors such as differences in
agent’s and demonstrator’s environment. These issues can be overcome by first inferring the intent of
the demonstrator (i.e., the reward function) and then determining a policy in the agent’s environment
that is consistent with the inferred intent. This approach, known as inverse reinforcement learning
(IRL) [1, 2] has been widely studied.

Despite the success of IRL in domains such as simulated locomotion, one major challenge in inverse
reinforcement learning is that a set of few demonstrations are well explained by many reward functions
(i.e., the reward ambiguity problem) [3]. As an example, consider a demonstration involving picking
up a blue ball, a red box, and then a green star. Just from this demonstration, it is unclear whether the
order of picking up the ball, box, and star is important or if the demonstrator’s intent was just to pick
up these objects in any order?

The previous discussion suggests that a model for inferring intent should be expressive and capable of
simultaneously representing a diverse set of plausible reward functions (i.e., capture multi-modality).
An additional desideratum is a mechanism to efficiently prune the space of reward functions, either
by querying the demonstrator or by incorporating good priors. Past works such as [4] have used deep
neural networks to represent the reward function. While deep neural networks (DNNs) are universal
function approximators and, therefore, very expressive, they suffer from the curse of data inefficiency.
Furthermore, because DNNs lack inductive biases that are useful when working with natural data and
tasks, the inferred reward function does not generalize to environments beyond the training set.

In this work, we advocate using stronger but very general priors to infer reward functions for the
family of tasks humans typically engage in. Some such priors are: humans think about the world
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in terms of objects, relationships between objects [5, 6], and often make use of recursion [7]. To
incorporate such general priors, we propose to use formal language and, more specifically, regular
expressions for inferring reward functions. We call this scheme of inferring reward functions as
regular expression reward learning (RERL). We show that RERL outperforms alternative approaches
based on deep learning on a suite of long-horizon sequence-dependent reward inference tasks. More
importantly, due to the built-in inductive biases, RERL generalizes to previously unseen environments.

2 Regular Expression Reward Learning (RERL)

We can represent the task by a language pattern ζ (e.g., ‘trajectories where the agent visit starget twice’)
and the reward r can then be defined by the degree of match M between the current trajectory τ and
the language pattern ζ, i.e., rζ(τ) = M(ζ, τ). In essence, we can treat state-action trajectories as
strings. The task of reward inference then reduces to finding a common pattern that distinguishes the
demonstrations.

Regular expression (RE) is a standard tool for describing string patterns. Regular expression is
sufficient for representing any regular language. We consider regular expressions because regular
expression operators (?, * , |, etc.) can easily describe complex patterns such as options and recurrence.
For example, ‘A?’ represents that A is optional; ‘A|B’ means either A or B is acceptable; ‘A*’ denotes
A may be repeated. We call a regular expression satisfying if it accepts all the positive demonstrated
strings and rejects all the negative strings.

We consider the following setup: A demonstrator provides multiple demonstrations of how to perform
(i.e., positive) and how not to perform (i.e., negative) task demonstrations. From these demonstrations,
using regular expressions based inference scheme the agent determines the reward function (i.e.,
the demonstrator’s intent). While in general, many language patterns maybe consistent with the
demonstrations, simple ones are preferred based on the principle of Occam’s Razor [8]. In this
work, we define a cost on the regular expression as a surrogate for measuring the pattern’s simplicity.
Each symbol and operator in the regular expression has a cost ci. A sequence has a total cost
cζ =

∑|ζ|
0 ci. We sample regular expressions with lower costs more often than ones with higher costs.

For this we use a simple mapping function f(c) = exp(−c) to construct the sampling distribution:
q(ζ) ∝ exp(−cζ).
We define the reward function based on two principles: (1): Reward depends on the regular expres-
sions that accept all positive examples and reject all negative examples. (2): Among all the regular
expressions that satisfy (1), one with lower cost should have a greater influence on reward estimation.
With these principles, we define the reward function as follows:

r(τ) = Eζ∈ZSM(ζ, τ) =
∑
ζ∈ZS

exp(−cζ)∑
ζ∈ZS exp(−cζ)

M(ζ, τ) (1)

Where cζ is the cost of the regular expression ζ, M(ζ, τ) = 1 if the string τ matches the regular
expression ζ and M(ζ, τ) = 0 otherwise. ZS is a set of satisfying regular expressions. In practice,
we search for K lowest cost expressions using the language inference engine and add them to ZS
as an approximation of the true posterior. In our experiments with sparse binary reward, K = 1 is
sufficient, which means the reward is estimated through the regular expression with the lowest cost.
In our implementation, we use an efficient search-based algorithm from [9] to search for the lowest
cost satisfying regular expression.

RERL can represent a variety of natural patterns with a small number of bits, and infer a reward
function via regular expression with a small number of examples. RERL is also more interpretable
than a parameterized reward function. For general IRL algorithms, one needs to train an RL policy on
the learned reward function to act in a new task. With RERL, one can also use a regular expression
interpreter and perform a new task by producing trajectories that match the regular expression.

3 Environments and evaluation

In this section, we evaluate our methods for reward inference tasks, in three long-horizon environments
where the reward function is non-Markovian. Besides these environments, we also illustrate the
effectiveness of language inference in a non-sequential, repeated game setting using contextual
bandits [10] in Appendix A.
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Training Testing

Intent: build a tool then collect at least one gem

(a)

Training Testing

Intent: first collect a box then collect a red ball

(b)

Figure 1: Non-Markovian reward environments. The true intents of the demonstrator are shown in the
text box below the environment figures. (a): The crafting environment. In the training environment,
both the red and the blue demonstrations are valid for the intent. In the example testing environment,
the only rewarding trajectory is the green trajectory. (b): The collecting environment. In the training
environment, both the red and the blue demonstrations are valid for the intent. While in the testing
environment with different objects, the rewarding trajectories are shown in green and purple. More
details on the environments are included in Appendix B. Emojis are from OpenMoji.

3.1 Non-Markovian 2D Environments

Environment I - Crafting: We first consider a crafting environment modified from [11]. The crafting
environment is a 2D world with objects (wood, iron, gem, crafting station) that the agent can interact
with. To collect any gem (G), the agent needs to craft either a hammer or a pickaxe as the tool. The
number of materials varies across environments. If there are wood (W) and iron (I), the agent can
make a pickaxe. If there are only irons, the agent makes a hammer. The agent collects the raw
materials (wood or iron), goes to the crafting station (S) to make the tool, and then collects the gems.

The demonstrator will give several positive/negative demonstrations with an intent in mind. Each
demonstration is represented by an interaction sequence (trajectory) τ . For example, the demonstrator
in Figure 1a has the intent ζ = (WI|II)SGG* to build a tool and then collect at least one gem.
He gives the blue and red positive demonstrations. τred = WISG, τblue = IISGG. τred represents an
interaction sequence where the demonstrator collects one piece of wood (W) and one iron (I), builds a
pickaxe in the crafting station (S), and then collects the gems (G). τblue means that the demonstrator
first collects two irons and builds a hammer, then moves to collect the two gems.

Environment II - Object Collection from Feature Observations: In the crafting environment
described above, every object is represented by a specific symbol. However, in the real world such
symbolic representation must be inferred from sensory inputs or feature descriptions. In order to
investigate if our method can also work with features we constructed another environment where
symbolic information is not directly available. The details of the environment are as following: each
object has three binary features: (a) shape (ball(B) or cube(C)); (b) size (large(0) or small(1));
and (c) color (red(0) or blue(1)). A teacher demonstrates several trajectories of object collection
(Figure 1b) that reflects her goal. Similar to the crafting environment, these demonstrations can be
represented as strings, where each element in the string denotes the presence/absence of a feature.
Because each object has three features it can be represented by a string of length 3. A trajectory is a
concatenation of the strings of all objects that the agent interacts with. For example, the string 01C
means a large blue cube. Figure 1b illustrates more examples: the blue-colored trajectory can be
represented as τblue = 01C⊕ 00B = 01C00B. The red trajectory is τred = 10C10B. Both trajectories
can be captured by the intent ζ in the form of a regular expression (0+1)(0+1)C(0+1)0B. Note that
we do not assume that trajectories are of fixed length.

3.1.1 Evaluation

We aim to learn reward prediction functions that can identify all rewarding trajectories in a testing
environment. In general, there are many non-rewarding (negative) trajectories and a few rewarding
(positive) trajectories. Therefore, a better evaluation metric than the prediction accuracy is the
precision-recall curve or the area under the precision-recall curve (AUC). In the test time, we
enumerate all possible trajectories in testing environments and rank all the trajectories by the model’s
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predicted probability p(r = 1|τtest) that a trajectory τtest match the intent. With this ranking, we can
compute the precision-recall curves and AUC for a model.

RERL uses the language inference engine to find the lowest cost regular expression ζ̂ that accepts all
positive demonstrations and rejects all negative demonstrations. RERL then score a testing trajectory
τtest by matching it to ζ̂. The score hRERL(τtest) = 1 if τtest satisfies ζ̂ and hRERL(τtest) = 0 otherwise.
Note that this score is exactly RERL’s estimate of the probability that the trajectory matches the intent:
hRERL(τtest) = pζ̂(r = 1|τtest). RERL rank all trajectories based on the predicted score hRERL(τtest).
We compare RERL with two baseline models based on the LSTM [12]:

(a) LSTM-LM: Given positive and negative trajectory-reward pairs (τ+, r+), (τ−, r−), we model
the distribution of the trajectories given the rewards p(τ |r). we denote s−1 = START which
represents the start of a sequence, and sm+1 = EOS which is the token of the end of se-
quence. The auto-regressive LSTM model parametrized by θs is trained to maximize the log-
likelihood of the demonstrated trajectories conditioned on the rewards:

∑
(τ,r)∼D log pθs(τ |r) =∑

(τ,r)∼D
∑mτ
i=0 log pθs(si+1|s−1, s0, ..., si, r). For a testing sequence τtest, pθs(r = 1|τtest)

is not obtainable from LSTM-LM. Instead LSTM-LM can output a score: hLSTM-LM(τtest) =
log pθs(τtest|1)−log pθs(τtest|0). This is a valid score because it can be shown that pθs(r = 1|τtest)
is strictly monotonically increasing when hLSTM-LM(τtest) increases. LSTM-LM ranks all trajec-
tories according to this score, and the ranking result will be the same as if LSTM-LM ranks all
trajectories according to pθs(r = 1|τtest).

(b) LSTM-CLS: We also use a binary LSTM classifier, parameterized by θc, which takes as input
the entire sequence τ and predicts the reward r ∈ {0, 1}. It scores a testing sequence with
hLSTM-CLS(τtest) = pθc(r = 1|τtest), which is exactly τtest’s probability of matching the intent.
LSTM-CLS use the score hLSTM-CLS(τtest) to rank all trajectories.

Figure 2: AUC of each model on the five tasks in each 2D environment with 6, 10, 14 training
demonstrations. RERL outperforms baseline models in most tasks.

We evaluate our method on five natural tasks (Table 3 in Appendix B) in each of the two environments
described above. For each experimental run, we randomly sample one training environment and
multiple testing environments with a different number of objects and layouts. During training, we
randomly sample N positive and N negative demonstrations from all possible trajectories in the
training environment. In the test time, we enumerate all possible trajectories in testing environments
and rank all trajectories using each model as described above. More details on this section’s
experiments are in Appendix B.4.

Performance: Figure 2 shows the AUC for each model with 2N = 6, 10, 14 demonstrations. Our
model outperforms both baseline models in most tasks. We also observe that for most tasks, adding
additional demonstrations only helps marginally, which motivates the experiments in the next section.

Data efficiency: We explore how many demonstrations are needed for the baseline models to catch
up with RERL in tasks where they perform poorly. Figure 3 shows the AUC for each model when we
increase the number of training demonstrations significantly. In more than half of the tasks, baseline
models do not perform better than RERL, even with a double amount of RERL’s training data.
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Figure 3: AUC when the LSTM models are given significantly more data on the five tasks in each 2D
environment. Kx on the x-axis means that the number of demonstrations used for training is 10×K.
The two dashed lines are the performance of RERL with 1x data and 2x data.

Figure 4: AUC with the interactive data acquirement procedure on the five tasks in each 2D environ-
ment. The x-axis reflects the number of training examples used in the three testing environment.

3.1.2 Interaction with the demonstrator

We hypothesize that the quality of the demonstrations is crucial for models to infer a generalizable
reward. Therefore, we consider an interactive learning setting. After each evaluation in a testing
environment, the agent can query the reward information of w trajectories in this environment. These
trajectories will be added to the training set. The agent uses the expanded training set to re-fit the
model. Then the agent is evaluated again in a new environment. More details on how we implement
this are included in Appendix B.5.

Figure 4 shows the AUC of interactive learning. For the crafting tasks, the benefit of using interactive
learning is salient. While we see in Figure 2 that the performance only has a modest increase given
more randomly sampled labeled trajectories, Figure 4 shows that the performance of RERL improves
significantly when the trajectories are proposed and labeled. For the object collection environment
where features of the objects matter, we do not observe an advantage of proposing and querying
trajectories over randomly sampling trajectories, because the total number of trajectories is small and
the search space of the reward function is much larger in the object collection environments.

3.2 Environment III - The Overcooked environment

Finally, to further test our method’s robustness against sub-optimal demonstrations and task objec-
tive not specified by a regular expression, we evaluate on a challenging video game environment,
Overcooked [13]. Here, two agents need to follow a coordinated procedure to serve a dish: (1) move
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three onions (O) to the pot (P), (2) take the dish (D) to the pot to hold the food, (3) serve it at the
serving station (S). We represent trajectories by the object interaction sequence for both agents. For
example, an interaction sequence OPOPOPDPS means that the two agents need to move three onions
to the pot three times repeatedly, then take a dish to the pot to hold the food, and finally serve it at the
serving station. Two agents can collaborate on the task in different ways, and hence, there are many
rewarding trajectories and sub-optimal trajectories. For instance, one agent may take the dish at the
beginning, and the other agent would have to fetch all three onions (DOPOPOPPS); or agents may take
more onions than needed (OPOPOPODPS), etc.

To collect positive trajectories, we use behavior-cloning (BC) to train a policy that imitates human-
play data, and use the learned policy to generate positive demonstrations. As there exists noise in
the human-play data, the learned policy also generates failed trajectories, which we use as negative
demonstrations. We also use a random policy to generate more negative demonstrations. The training
dataset is split into a training set and a testing set. To test the out-of-distribution generalization,
we augment the testing set with a set of positive and negative trajectories from a heuristic game-
play policy provided in the environment. Figure 5 shows that RERL consistently outperforms
baseline models given different numbers of demonstrations, including the case when more than 50
demonstrations are given.

(a)
(b)

Figure 5: (a): The Overcooked environment. (b): AUC of each model on the Overcooked task with
varying number of training demonstrations. RERL outperforms LSTM models at all numbers of
demonstration.

4 Related work

Inverse reinforcement learning: Most of the existing IRL approaches focus on learning Markovian
rewards [1, 2, 14, 15, 3, 4] from optimal or near-optimal demonstrations. However, such IRL
algorithms are usually not directly applicable to non-Markovian settings [16, 17], which makes the
space of reward functions much larger and thus the inference problem much more challenging.

Symbolic hierarchical reinforcement learning: These methods [18, 19] either pre-define or learn a
set of symbols with a low-level policy for each symbol, and learn a high-level policy to compose these
symbols for solving a variety of long-horizon tasks, including robotic imitation, games, combinatorial
problems [11, 20–24], etc. The problem setting of these methods is highly compatible with our
framework, given the symbolic nature of our model.

Program synthesis: Neural program synthesis is gaining increasing attention [24–30]. Our frame-
work can be integrated with these methods to generalize to other language patterns and improve
language inference efficiency.

5 Discussion

A typical problem in applying methods that use language for inference in the real world is that they
assume access to symbols. The use of symbolic representation is a two-edge sword: it allows very
efficient learning at the cost of not operating directly from sensory inputs. We partially address this
limitation by showing our method can work from binary features. We believe our contributions are
complementary to the rapidly advancing body of work looking at inferring symbolic representations
from images [31]. With advances in this direction, which are complementary to our work, we hope
that our approach can be applied to even more complex problems in the future.
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Appendix A Contextual bandit experiment

We illustrate the use of language inference in a non-sequential, repeated game setting using contextual
bandits [10]. Regular expressions are used to infer how the context drives action-dependent rewards
specifically. Suppose there are k arms. Each arm has an underlying regular expression (for example,
1?(01)*0?, which means 0 and 1 alternate.) that determines the reward of pulling the arm. The
action space isA = {1, 2, . . . , k}. At round t, the agent is given a context st, which is a binary string
(for example, 010). The agent decides an arm at to pull based on st. If st satisfies the underlying
regular expression for arm at, the agent gets +1 reward. Otherwise, the agent gets 0 reward. The goal
of the agent is to maximize the cumulative total reward over a finite horizon T . In our experiments,
we take 12 regular expressions (in appendix) from [9]. Each regular expression has a few positive
and negative example strings. The context set S is the union of all these examples. The context st
is sampled from S. In every experiment, we randomly sample k out of 12 regular expressions and
assign one to each arm.
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Figure 6: Regret curves of the contextual bandit problem. RERL learns the fastest and achieves the
lowest regret compared to all the baselines. We report the average regret curves over 75 runs. The
shaded area represents 95% confidence level.

RERL estimates the regular expression ζ̂at that satisfies all the contexts Dat = {(si, ri)|ai = at, i =
0, 1, ..., t} for arm at using the language inference engine. With the inferred regular expression for
each arm, RERL can predict the reward via r(sj , aj) =M(ζ̂aj , sj) where M = 1 if sj satisfies ζ̂aj
and M = 0 otherwise. We consider 4 binary classification models as baselines: logistic regression,
decision tree, random forest, and multi-layer perceptron (MLP). Each arm a has its own classifier fa.
For all the baselines, we re-train the reward prediction models fat by min(si,ri)∈Dat ‖ri − fat(si)‖

2
2

after round t. We pad each context string st to the same length and use the one-hot encoding method to
represent every symbol (0, 1, padding) in the context for the models that require a fixed-length input.
As a reference, we also compare all methods to a random policy. We use the ε-greedy exploration
strategy for all the models, with ε = 0.1. More experiment details are included in the appendix.

We use the averaged regret over a period of m rounds: R =
1
m

∑m(n+1)
t=mn [maxat∈A r(st, at)− r(st, at)] , n ∈ Z+ to evaluate the performance of all

methods. Figure 6 shows the regret curves when m = 50. In all experiments, RERL consistently
outperforms all the baselines in all periods.

The regular expressions used in the contextual bandit problem (Table 1) are adopted from [9]. In our
experiments, the regular inference module will be called for hundreds of times per rollout. Therefore
we remove the regular expressions that take too long to infer (more than 10 seconds) as indicated in
Table 3 of [9], so we can run a large number of rollouts in a shorter time. We also remove the regular
expressions that are too easy to satisfy. For example, the regular expression (0|1)(0|1)(0|1)*.
This expression will accept all strings other than 0 and 1. If an arm is assigned with this expression,
almost all context strings can satisfy this regular expression. So the agent can always pull this arm at
any round and achieve very low regret, which makes the contextual bandit problem trivial to solve.
There are also several regular expressions in [9] that use the special symbol X, which represents ‘either
0 or 1’. We remove these expressions as they have unproportional number of examples compared
to other regular expressions. After removing the expressions mentioned above from Table 3 of [9],
we obtain the expressions in Table 1. The cost of regular expressions we used for this experiment is
shown in Table 2. These costs are unchanged from those used in [9].

We run experiments with k = 2, 3, 4 arms. For a contextual bandit with k arms, we run the experiment
with horizon T = 100× k.

Appendix B Non-markovian environment experiment

B.1 Ablation: non-structured tasks

The tasks described in Table 3 are structural and can be represented with relatively compact regular
expressions. We want to further test the performance of RERL on non-structured tasks in the crafting
environment (Table 5 in Appendix B.5) where using regular expressions to describe the tasks is
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Table 1: Regular expressions used in the contextual bandit experiment.

Regex description #pos #neg
0?(1(10)?)* There are at least two occurences of 1. 7 7
1?(01)*0? 0 and 1 alternate. 9 8
000*0(11)* (0n1m) where n ≥ 3 and m is even. 6 5
(1?0)*1?1?(01?)* Has at most one pair of consecutive 1s. 5 5
0?((01)?10?)* Every pair of consecutive 0s appears 9 9

before any pair of adjacent 1s.
(1|01*01*0)* Number of zeros divisible by 3. 8 7
(1|01*0)* Even number of zeros. 7 7
1*0?1*0?1* Have at most two zeros. 8 7
(0?1)* Each 0 is followed by at least one 1. 7 6
(1|011*01)* Even number of 0’s and each 0 is followed 6 9

by at least one 1.
0*(01?|100*) Contains at least one 0 and at most one 1. 6 9
(0?1)*00(10?)* Has exactly one pair of consecutive 0s. 4 4

Table 2: Cost for regular expressions used in the contextual bandit experiments.

Symbol or Operator Cost
Alphabet 20
Concatenation (e1e2) cost(e1) +cost(e2) + 5
Or (e1|e2) cost(e1) + cost(e2) + 30
Kleene star (e∗) cost(e) + 20
Zero or one (e?) cost(e) + 20

not efficient. Figure 7 shows that even though the performance of all the methods drop, RERL
outperforms all the baseline models.

Figure 7: AUC for five tasks that do not have a regular structure in the crafting environment. RERL
outperforms baseline models.

B.2 Environment implementation

We build the two 2D environments using Gym-MiniGrid [32, 33]. Each environment is a grid of size
17× 17. Each grid is empty or contains at most one object. There are seven possible actions: move
forward, turn left, turn right, pick up, drop off, toggle, and done. Each object in the environment has
two features: color and size. We focus on the high-level demonstrator intent inference. The low-level
agent movement is achieved using the A* path planning algorithm.

Environments are shown in Figure 8. The red triangle represents the agent. In the crafting environment
shown in 8a, a yellow ball represents a wood, a grey ball represents an iron, and a blue ball represents
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Table 3: Tasks used in the 2D environments.

Crafting
Regular Expression Description
ISW*S iron → station → some wood → station
(W|I)G*(W|S) iron or wood → some gem → wood or station
(W|I)(W|I)SG* build a tool (two wood or iron → station) → some gem
WI(G|S)W*S wood → iron → gem or station → some wood → station
(WI|IW)SGG* build a pickaxe (wood and iron → station) → at least one gem

Featured Object Collection
Regular Expression Description
(0|1)(0|1)(B|C) collect only one object of any feature or kind
(01(B|C))* collect any number of large blue objects
((0|1)(0|1)B)* collect any number of balls
0(0|1|B|C)*0C first collect a large object and collect a red box at last
(0|1)*C(10B)* first collect a box, then collect any number of small red balls

(a) (b) (c)

Figure 8: Visualization of the actual implementation of our crafting and object collection environ-
ments. (a): An example of the crafting environment. (b): An example of the featured object collection
environment. (c): All possible objects in the featured object collection environment.

a gem. The orange tile represents the crafting station. In the featured object collection environment,
each object has three binary features: size (large or small), color (red or blue), and type (ball or box).
Hence, in total, we have 8 possible different objects, as shown in 8c.

The environment is randomly initialized for each training and testing experiment. For the crafting
environment, the station always exists, and the number of wood/iron/gem is either 1 or 2 with the
same probabilities. For the featured object collection environment, we sample 5 objects uniformly at
random from the 8 possible objects with replacement. All objects are placed at random locations on
the map without any overlap. An example of the crafting environment is shown in Figure 8a. An
example of the featured object collection environment is shown in Figure 8b.

B.3 Model details

In all our experiments, we implement the LSTM-LM model with a one-layer LSTM with 8 hidden
units, and we implement the LSTM-CLS model with a bi-directional one-layer LSTM with 8 hidden
units, and a fully-connected layer of 16× 2 for classification. We train the LSTM model for 6000
iterations at the beginning, and 6000 more iterations every time after we acquire more data in
the interactive learning setting described in the section ‘Interaction with the demonstrator’. The
LSTM-LM model is trained using SGD with learning rate 0.01 and momentum 0.9. The LSTM-CLS
model is trained using SGD with learning rate 0.001 and momentum 0.9. The hyperparameters are
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well-tuned for each model. The LSTM models are small as the amount of training data and the data
dimension are small.

The cost of regular expressions we used for experiments in the non-Markovian environments is shown
in Table 4. We did not find the need to tune these cost numbers; we mainly raise the cost for the ‘?’
symbol since it is not necessary for the tasks we designed.

Table 4: Cost for regular expressions used in the non-Markovian environment experiments.

Symbol or Operator Cost
Alphabet 10
Concatenation (e1e2) cost(e1) +cost(e2) + 5
Or (e1|e2) cost(e1) + cost(e2) + 20
Kleene star (e∗) cost(e) + 20
Zero or one (e?) cost(e) + 100

B.4 Experiment details

As described in Section 3.1.1, we would like to sampleN positive examples andN negative examples
in the training environment. However: (1) sometimes there does not exist any positive demonstration
in the sampled training environment. (e.g., in the featured object collection environment, for the intent
‘pick any ball’, it may happen that a sampled training environment does not have any ball.) In this
case, we keep resampling the training environment until there is at least one positive demonstration.
(2) sometimes there are 0 < N ′ < N possible positive trajectories in total in the training environment.
In this case we will have the N ′ trajectories as positive demonstrations and sample 2N −N ′ negative
demonstrations. So the total number of demonstrations is always 2N . Note that our tasks are designed
to have multiple rewarding trajectories in general, and all models always receive the same set of
training demonstrations.

In our experiments, we use a relatively small number of objects in the environment so that we can
enumerate all possible trajectories. For environments with more objects and features, exhaustive
enumeration may be computationally expensive or even impossible. In such cases, we can train a
policy that proposes good candidates with reinforcement learning algorithms by maximizing the
learned reward for each model, then evaluate the reinforcement learning policy learned from each
model. Note that for RERL, it is also possible to obtain a policy through a parsing module that
can interpret the inferred regular expression. For LSTM-LM, it is possible to sample trajectories
conditioned on the reward being 1.

For each task, we sample 8 random training environments with randomly sampled 2N demonstrations.
We run experiments forN = 3, 5, 7. For each training environment, we sample 4 testing environments
to evaluate the learned reward. Therefore for each task, we run 32 sampled configurations and report
the averaged performance with a 95% confidence interval.

For the experiment where LSTM models take a much larger training set, It is possible that 2N is
larger than the number of all possible trajectories in the training environment. For example, in the
featured object collection environment, we may sample the same object five times, and there will be
only five possible trajectories. In this case, we will use all possible trajectories as the training set for
that run.

B.5 Experiment Details for the Interactive Setting

We start with 2N = 6 training demonstrations and let each model propose and query w = 4 more
trajectories in a testing environment. We repeat the interactive learning process twice. So the size of
the training set is 6, 10, 14, respectively, for the first, second, and third testing environment. For all
models, the probability of a trajectory τ being proposed and queried by the agent is proportional to
the agent’s predicted reward of τ .

For all models, the probability of proposing a trajectory τ for getting the ground-truth reward is
proportional to the model predicted score of τ . For LSTM-LM, we use a sigmoid function over the
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Table 5: Non-structured tasks in the crafting environment used in our experiments. Regular expres-
sions are not efficient in representing these intents.

Non-structured Tasks
Regular Expression Description
WISG wood → iron → station → gem
(W|I|S|G)(W|I|S|G) interact with 2 arbitrary objects
WIS|WSI|IWS|ISW|SWI|SIW interact with wood, iron, station once, order doesn’t matter
(W|I|S)(W|I|S) interact with wood or iron or station twice
WISG|GSIW|WGSI|WSIG 4 length 4 sequences with no explicit structure

score to normalize the score to the range of 0 to 1 in this process. A model only proposes trajectories
that are not already in its training demonstrations.

B.6 Experiment Details for the Overcooked Environment

For the Overcooked experiments, we use the official implementation of the environment and collect
trajectories from the environment with a behavior cloning (BC) policy and a pre-defined heuristic
policy, all open-sourced by the original authors. The behavior cloning policy is learned over crowd-
sourced human play data. The positive trajectories are the ones that serve the dish within 50 timesteps.
The model details, including hyperprameters, cost for regular expressions, etc. are all the same as
those in the 2D environments.

14


